

An
Easy Reference

for
ALV GRID CONTROL

Serdar ŞİMŞEKLER
2004, Ankara TURKEY

© Copyright 2003 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be
changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary
software components of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are
registered trademarks of Microsoft Corporation.

IBM®, DB2®, DB2 Universal Database, OS/2®, Parallel Sysplex®, MVS/ESA, AIX®,
S/390®, AS/400®, OS/390®, OS/400®, iSeries, pSeries, xSeries, zSeries, z/OS, AFP,
Intelligent Miner, WebSphere®, Netfinity®, Tivoli®, Informix and Informix® Dynamic
ServerTM are trademarks of IBM Corporation in USA and/or other countries.

ORACLE® is a registered trademark of ORACLE Corporation.

UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group.

Citrix®, the Citrix logo, ICA®, Program Neighborhood®, MetaFrame®, WinFrame®,
VideoFrame®, MultiWin® and other
Citrix product names referenced herein are trademarks of Citrix Systems, Inc.

HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World
Wide Web Consortium, Massachusetts Institute of Technology.

JAVA® is a registered trademark of Sun Microsystems, Inc.

JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

MarketSet and Enterprise Buyer are jointly owned trademarks of SAP AG and Commerce
One.

SAP, SAP Logo, R/2, R/3, mySAP, mySAP.com, xApps, SAP NetWeaver , mySAP
Business Suite, and other SAP products and services mentioned herein as well as their
respective logos are trademarks or registered trademarks of SAP AG in Germany and
in several other countries all over the world. All other product and service names
mentioned are the trademarks of their respective companies.

Table of Contents

Purpose..1
Prerequisites ...1
A. Introduction ...1
B. Building Blocks ..1

B.1. General Scheme..2
B.2. Building Field Catalog ...7

B.2.1. Structure of a Field Catalog ..7
B.2.2. Building Field Catalog Manually...9
B.2.3. Building Field Catalog Semi-Automatically..10

B.3. Layout Adjustments ...12
B.4. Printing Adjustments..14
B.5. Excluding Unwanted Standard Function Buttons ..15

C. Non-Event Based Additional Functionalities ...16
C.1. Changing Field Catalog or Layout after First Display.....................................16
C.2. Setting Sort Conditions ..16
C.3. Filtering ..17
C.4. Making Selections ..18
C.5. Retrieving and Setting Scroll Status Info...19
C.6. Coloring..19

C.6.1. Coloring an Entire Column ...20
C.6.2. Coloring an Entire Row...20
C.6.3. Coloring Individual Cells ..21

C.7. Inserting Hyperlinks...22
C.8. Making Fields as Dropdown Menus ..23
C.9. Managing variants ..24

D. Event Based Additional Functionalities ..25
D.1. General Scheme for the Event Handler Class..26
D.2. Hotspot Clicking ..28
D.3. Double Clicking ...29
D.4. Pushbuttons On The List..29
D.5. Adding Your Own Functions...30
D.6. Overriding Standard Functions ..32
D.7. Context Menus ...32
D.8. About printing ..33
D.9. Making ALV Grid Editable ...34
D.10. Controlling Data Changes..35
D.11. Linking F1 Help to Fields ..36
D.12. Linking F4 Help to Fields ..37

E. A Piece of Troubleshooting...38
TRADEMARKS ..Error! Bookmark not defined.

Purpose

 The purpose of this tutorial is to provide an easy and quick reference that may
be used as a guide while coding to build lists using ALV Grid Control. Actually, there
is easy-to-reach information about implementing ALV Grid lists. However, it is
generally required to find the information sought in a quicker way. This tutorial
handles this, being a condensed source that can be used as a “guide.” It will not deal
with the technical infrastructure on which ALV lays. Some of the tables are taken
from the online SAP Library, which is the most trustable source about the topic.
Shortly, this will be a booklet summarizing major capabilities of the ALV Grid
Control.
 To get deep into the ALV Grid control, you can refer to the standard SAP
course “BC412 – ABAP Dialog Programming Using EnjoySAP Controls” and the
book “Controls Technology”. Also you had better inspect demo programs.

Prerequisites
 To use ALV Grid Control in a simple manner, it will be sufficient just having
experience on dialog programming. However, to make use of more capabilities, it is
required some knowledge on object-oriented perspective of ABAP programming. A
general knowledge on control framework is supposed to exist.

A. Introduction
 Here is the definition for ALV from SAP Help:
“The ALV Grid control is a flexible tool for displaying lists. The tool provides
common list operations as generic functions and can be enhanced by self-defined
options.”
 The ALV Grid control is used to build non-hierarchical, interactive, and
modern-design lists. As a control, it is a component that is installed on the local PC.
 The ALV Grid control provides typical list functions as sorting, filtering,
summing, etc.,while also gives the opportunity to develop user functions where
needed. It presents numerous interfaces like Excel Inplace and Crystal Reports.
 The wrapper class implemented to encapsulate ALV Grid functionality is
“CL_GUI_ALV_GRID”. There is another way to display lists with ALV utilizing
“REUSE_ALV...” functions. However, that way is not comprised in this tutorial.

B. Building Blocks
 While preparing a list to be displayed via an ALV grid control, we have some
basic components to prepare. These are;

i. List data: Obviously, this is the data in an internal table to be listed. Standard
ALV functions except sorting makes just read access to the list data.
However, sorting changes state of the internal table. The internal table
holding list data may be of any flat type. Deep types are only allowed
when set for some functionalities of ALV Grid.

ii. Field Catalog: We use another internal table to define specifications on how
the fields of our list will be displayed. This internal table is called the

“field catalog”. The field catalog must comprise some technical and
additional information about display options for each column to be
displayed. There are three procedures to generate the field catalog as
“Automatic generation”, “Semi-automatic generation”, and “Manual
generation”. The internal table for the field catalog must be referenced to
the dictionary type “LVC_T_FCAT”.

iii. Layout Structure: We fill a structure to specify general layout options for the
grid. With this structure we can set general display options, grid
customizing, totals options, color adjustments etc... The layout structure
must be of type “LVC_S_LAYO”.

iv. Event Handler: We should define and implement an event handler class if
we want to handle events triggered by the ALV Grid instance. After
creating ALV Grid instance, we must register an instance of this event
handler class to handle ALV Grid events.

v. Additional Data: To trigger some additional features of ALV Grid we can
have some additional data to pass as parameters. For example, initial
sorting criteria, buttons to be deactivated, etc...

B.1. General Scheme
 Now, we can figure out a primitive scheme to prepare our ALV Grid. As a
control object, ALV Grid instance requires a container to be linked to the screen.
Generally, an instance of the class “cl_gui_custom_container” is used for this
purpose. Instances of some other container classes such as
“cl_gui_docking_container”, “cl_gui_dialogbox_container” may also be
used. In our example we take a custom container. To create a custom container
instance, we need a custom control area on the screen.

 Step 1Æ Add a custom control on the screen which will be related to the
custom container. Let’s give it the name ‘CC_ALV’.
 Step 2 Æ Declare global variables to be used for ALV Grid.

Code Part 1 – Global data definitions for ALV

*-- Global data definitions for ALV

*--- ALV Grid instance reference
DATA gr_alvgrid TYPE REF TO cl_gui_alv_grid .
*--- Name of the custom control added on the screen
DATA gc_custom_control_name TYPE scrfname VALUE ‘CC_ALV’ .
*--- Custom container instance reference
DATA gr_ccontainer TYPE REF TO cl_gui_custom_container .
*--- Field catalog table
DATA gt_fieldcat TYPE lvc_t_fcat .
*--- Layout structure
DATA gs_layout TYPE lvc_s_layo .

 Step 3 Æ Declare your internal table which is supposed to hold the list data.
Let’s name it “gt_list”. Here is an example declaration.

C

l
i
d

t

C

C

w
t
s

*--- Internal table holding list data
DATA BEGIN OF gt_list OCCURS 0 .
INCLUDE STRUCTURE SFLIGHT .
*--In further sections, some additional fields will added here
*--for some functionality
DATA END OF gt_list .
ode Part 2 – Declaration of the internal table that will hold the list data

Step 4 Æ Somewhere in your program before calling list display, fill your
ist data as you want. Here, it is not our concern what the data are. We assume the
nternal table is filled reasonably. We will use the data of table SFLIGHT as our list
ata.

Step 5 Æ Call the screen which comprises the ALV Grid control. At PBO of
his screen we will deal with creating the ALV Grid instance.
*--PBO
PROCESS BEFORE OUTPUT .
...

MODULE display_alv .
...
ode Part 3 – PBO of the flow logic for the screen containing ALV Grid control

ode Part 4 – Inside the module

...
MODULE display_alv OUTPUT .
 PERFORM display_alv .
ENDMODULE .

Step 6 Æ Now, it is high time we wrote something to play. So, this piece
ill be the one we will deal mainly. What we do is, checking whether an instance of

he container (or ALV Grid) exists. If it exists, refreshing it, and if not, creating and
etting ALV for the first display.

FORM display_alv .
 IF gr_alvgrid IS INITIAL .
*----Creating custom container instance
 CREATE OBJECT gr_ccontainer
 EXPORTING
 container_name = gc_custom_control_name
 EXCEPTIONS
 cntl_error = 1
 cntl_system_error = 2
 create_error = 3
 lifetime_error = 4
 lifetime_dynpro_dynpro_link = 5
 others = 6 .
 IF sy-subrc <> 0.
*--Exception handling
 ENDIF.

C
r

*----Creating ALV Grid instance
 CREATE OBJECT gr_alvgrid
 EXPORTING
 i_parent = gr_ccontainer
 EXCEPTIONS
 error_cntl_create = 1
 error_cntl_init = 2
 error_cntl_link = 3
 error_dp_create = 4
 others = 5 .
 IF sy-subrc <> 0.
*--Exception handling
 ENDIF.

*----Preparing field catalog.
 PERFORM prepare_field_catalog CHANGING gt_fieldcat .

*----Preparing layout structure
 PERFORM prepare_layout CHANGING gs_layout .

*----Here will be additional preparations
*--e.g. initial sorting criteria, initial filtering criteria, excluding
*--functions

 CALL METHOD gr_alvgrid->set_table_for_first_display
 EXPORTING
* I_BUFFER_ACTIVE =
* I_CONSISTENCY_CHECK =
* I_STRUCTURE_NAME =
* IS_VARIANT =
* I_SAVE =
* I_DEFAULT = 'X'
 is_layout = gs_layout
* IS_PRINT =
* IT_SPECIAL_GROUPS =
* IT_TOOLBAR_EXCLUDING =
* IT_HYPERLINK =
 CHANGING
 it_outtab = gt_list[]
 it_fieldcatalog = gt_fieldcat
* IT_SORT =
* IT_FILTER =
 EXCEPTIONS
 invalid_parameter_combination = 1
 program_error = 2
 too_many_lines = 3
 OTHERS = 4 .
 IF sy-subrc <> 0.
*--Exception handling
 ENDIF.
 ELSE .
 CALL METHOD gr_alvgrid->refresh_table_display
* EXPORTING
* IS_STABLE =
* I_SOFT_REFRESH =
 EXCEPTIONS
 finished = 1
 OTHERS = 2 .
 IF sy-subrc <> 0.
*--Exception handling
 ENDIF.
 ENDIF .
ENDFORM .
ode Part 5 – Form checking instance existence, creating instance, setting for first display and
efreshing

 From ABAP objects, we are familiar with “CREATE OBJECT” statement
which instantiate classes. In this snippet of code, we used two instance methods of
“cl_gui_alv_grid”. First is “set_table_for_first_display” whose name
implies for what it is used. After creating the ALV Grid instance we call this method
to make our list displayed. We pass list data table, field catalog table, layout structure
and additional information. Here are parameter definitions taken from SAP Library.

Parameter Meaning

I_BUFFER_ACTIVE Flag to be set by the application if the method call is static.
This means the method is always called with the same field
catalog. In this case, the field catalog can be held in a special
buffer. This accelerates the display of small lists, in particular.

I_STRUCTURE_NAME Name of the DDIC structure (for example, 'SFLIGHT') for the
data in the output table. If you specify this parameter, the field
catalog is generated automatically.

IS_VARIANT Determines the layout to be used for displaying the output
table. If you use this parameter, you must at least fill field
REPORT of the structure of type DISVARIANT.

I_SAVE Determines the options available to the user for saving a
layout:

• 'X': global saving only
• 'U': user-specific saving only
• 'A': corresponds to 'X' and 'U'
• SPACE: no saving

I_DEFAULT This parameter determines if the user is allowed to define
default layouts:

• 'X': Default layouts allowed (default setting)
• SPACE: Default layouts not allowed

If default layouts are allowed and if such a layout exists and
no other layout is specified in IS_VARIANT, the default layout
is automatically loaded when this method is called.

IS_LAYOUT Determines properties of the grid control. The layout structure
has nothing to do with the layout for saving filter, sort, and
column properties.

IS_PRINT Parameter for printing on the backend

IT_SPECIAL_GROUPS If in the field catalog the columns were grouped together with
field SP_GROUP, you must pass a table with texts for these
groups. On the current layout window, it is then possible to
use a list box to restrict column selection to one of these
groups.

IT_TOOLBAR_EXCLUDING This table contains function codes of the toolbar that you want
to hide for the lifetime of the ALV Grid Control. The function
codes are constant attributes and are prefixed with MC_FC_.

IT_HYPERLINK This table assigns a hyperlink address (field HREF of
LVC S HYPE) to each handle (field HANDLE of

LVC_S_HYPE). Using this handle, you can then include
hyperlinks in the grid.

IT_ALV_GRAPHICS Settings for displaying the ALV list as a diagram (for example,
axis labels). The row type of the table has two fields
(variables/value pairs):

• PROP_ID: Assign a constant attribute of the class
CL_ALV_GRAPHICS_CU with prefix CO_PROPID_ to
this field to determine the changes to be made to the
graphic. Use the
CL_ALV_GRAPHICS_CU=>CO_PROPID_TITLE
attribute, for example, to refer to the title of the
diagram.

• PROP_VAL: The value of the relevant topic, for
example, 'My Title'.

IT_OUTTAB Output table with the data to be displayed

IT_FIELDCATALOG Determines the structure of the output table and the format of
the data to be displayed

IT_SORT Table with sort properties for columns that are to be sorted
initially

IT_FILTER Table with filter properties for columns for which a filter is to
be set initially

 The second method we used in our code snippet was
“refresh_table_display” which, as implied from the name again, is used to refresh
the ALV display. We do not want our ALV Grid to be created every time the PBO
triggers. The first pass should create it and others should just refresh. However, we
may require some changes about the appearance, layout, field catalog etc…. In that
case, we will try to use other ALV methods to make changes. The parameter
definition table of this method is as follows.

Parameter Meaning

IS_STABLE If the row or column field of this structure is set, the position of
the scroll bar for the rows or columns remains stable.

I_SOFT_REFRESH This parameter is used only in exceptional cases. If you set
this parameter, any totals created, any sort order defined and
any filters set for the data displayed remain unchanged when
the grid control is refreshed. This makes sense, for example,
if you have not modified the data of the data table and want to
refresh the grid control only with regard to layout or field
catalog changes.

 OK! Seeing a simple but whole picture we are now ready to advance to build
our basic components which we just point as form calls in the scheme.

http://help.sap.com/saphelp_erp2004/helpdata/en/85/ce25c2d7ae11d3b56d006094192fe3/content.htm
http://help.sap.com/saphelp_erp2004/helpdata/en/85/ce25c2d7ae11d3b56d006094192fe3/content.htm

B.2. Building Field Catalog
 As mentioned earlier, there are three procedures to build a field catalog. The
simplest way applies if our list structure is similar to a dictionary table. To do this, we
simply eliminate the form call and pass the name of dictionary structure (in our
example, ‘SFLIGHT’) to the parameter ‘I_STRUCTURE_NAME’. Before explaining other
procedures, let’s see what a field catalog has in its structure.

B.2.1. Structure of a Field Catalog
 The row structure of a field catalog is of dictionary type ‘LVC_S_FCAT’. There
are many fields providing adjustment of display options for our list columns. Here are
the basic ones.

FIELDNAME
 You use this field to assign a field name of your output table to a
row of the field catalog. All settings that you make in this row refer to
the corresponding column of the output table.

REF_FIELD

You must fill this field if:

• the output table field described by the current entry in the
field catalog has a corresponding field in the Data Dictionary
and

• the field name in the output table is not identical to the field
name of the field in the Data Dictionary.

If the field names are identical, it is sufficient to specify the DDIC
structure or table in field REF_TABLE of the field catalog.

REF_TABLE

You must fill this field only if the output table field described by the
current entry in the field catalog has a corresponding entry in the Data
Dictionary. Using this assignment, the ALV Grid Control can copy
the text for the column header from the Dictionary, for example.

CHECKBOX Outputting a checkbox. The checkbox cannot be modified by the user.

COL_POS

Relevant only if the relative column positions should not be identical
to the sequence of fields in the field catalog when the list is displayed
for the first time. The parameter determines the relative column
position of the field for list output. The user can interactively modify
the order of the columns. If this parameter is initial for each field
catalog entry, the order of the columns corresponds to the sequence of
fields in the field catalog.

DO_SUM If this field is set, the ALV uses this field to calculate the total (this
corresponds to the generic totals function in the toolbar.)

EMPHASIZE

If the field is set to 'X', the ALV uses a pre-defined color for
highlighting the column. If it is set to 'Cxyz' (color code), the
remaining numbers have the following meaning:

• x: color number
• y: intensified display on/off
• z: inverse display on/off

HOTSPOT
If this field is set, all cells of this column are hotspot-sensitive.

HREF_HNDL

Handle to which an URL is assigned. The ALV Grid Control displays
all cells of the column as hyperlinks. You must maintain the target
address of the hyperlink in a table of type LVC_T_HYPE and pass it
using set_table_for_first_display.

KEY If this field is set, the ALV Grid Control color-codes the column as a

http://help.sap.com/saphelp_erp2004/helpdata/en/0a/b5533cd30911d2b467006094192fe3/content.htm

key field and fixes this column during horizontal scrolling. The order
of the key columns in the ALV Grid Control can be modified
interactively. In contrast to the SAP List Viewer, the ALV Grid
Control allows you to directly hide key columns with NO_OUT

LOWERCASE If this field is set, the ALV Grid Control recognizes upper/lower case
in the output table. This affects the sorting of fields, for example.

NO_OUT

If you set this field, you hide the relevant column in the list.
Nevertheless, the column is available in the field selection and can be
interactively selected by the user as a display field. The ALV displays
the contents of hidden fields on the detail screen for a row in the grid
control.

NO_MERGING If this field is set, cells with the same value are not merged into a
single cell when this column is sorted.

NO_SUM If you set this field, you lock totals calculation for the relevant field.

OUTPUTLEN

Determines the column width of the field:

• If the field has a reference to the Data Dictionary, you can
leave the field set to its initial value. In this case, the ALV
adopts the output length of the relevant domain.

• For fields without reference to the DDIC, you must specify
the desired field output length.

STYLE
Displays all cells of this column with a style e.g. as pushbuttons.
Constants “MC_STYLE…” of the class “cl_gui_alv_grid” can
be passed to this field.

TECH
If this field is set, the relevant field is not displayed on the list and
cannot be shown interactively. The field is only known in the field
catalog. (For example, it must not be specified as a sorting criterion).

DECIMALS_O

If a field has no currency, then you can use this field to determine the
number of decimal places to be displayed. This setting is kept even if
you afterwards assign a currency field to this field or assign a
currency to the CURRENCY field of the field catalog.

DECMFIELD
Defining the digits after the comma on a row-by-row basis. You can
use an additional field in the output table to determine how many
digits are to be displayed after the comma in each row.

EDIT_MASK
If you set a conversion exit (for example, conv = ' ==ALPHA ' for
function module CONVERSION_EXIT_ALPHA_OUTPUT), you
enforce output conversion for the associated output field.

ICON

If this field is set, the column contents of the output table are output as
an icon. The column contents must consist of valid icon strings (
@xx@ or @xx\Q <Quickinfo> @). You should consider the problem
of printing icons.

JUST

Relevant only to fields of data type CHAR or NUMC.
Justifications:

• 'R': right justified
• 'L': left justified
• 'C': centered

How the column header is justified, depends on how the column
contents are justified. You cannot justify the column header
separately.

LZERO Relevant only to fields of data type NUMC. In the default setting, the

ALV Grid Control displays these fields right justified without leading
zeros. If you set LZERO, leading zeros are displayed.

NO_SIGN Relevant only to value fields. If you set NO-SIGN, values are
displayed without signs.

NO_ZERO If NO_ZERO is set, no zeros are displayed for initial value fields.
The cell remains empty.

COLDDICTXT

Relevant only to fields with reference to the Data Dictionary. You use
values 'L', 'M', 'S' or 'R' to determine if SCRTEXT_L,
SCRTEXT_M, SCRTEXT_S or REPTEXT is used as the column
header.

COLTEXT Determines the column header of the column. You should assign a
value to this field if it does not have a Data Dictionary reference.

REPTEXT
Relevant only to fields with reference to the Data Dictionary. For such
fields, the ALV Grid Control copies the field label for the header of
the corresponding data element into this field.

SCRTEXT_L
Relevant only to fields with reference to the Data Dictionary. For such
fields, the ALV Grid Control copies the long field label of the
corresponding data element into this field.

SCRTEXT_M
Relevant only to fields with reference to the Data Dictionary. For such
fields, the ALV Grid Control copies the medium field label of the
corresponding data element into this field.

SCRTEXT_S
Relevant only to fields with reference to the Data Dictionary. For such
fields, the ALV Grid Control copies the short field label of the
corresponding data element into this field.

SELDDICTXT

Relevant only to fields with reference to the Data Dictionary. You use
values 'L', 'M', 'S' or 'R' to determine if SCRTEXT_L,
SCRTEXT_M, SCRTEXT_S or REPTEXT is used as the text for
column selection.

SELTEXT
Determines the text to be used in the column selection for the column.
You should assign a value to this field if it does not have a Data
Dictionary reference.

TIPDDICTXT

Relevant only to fields with reference to the Data Dictionary.
You use values 'L', 'M', 'S' or 'R' to determine if SCRTEXT_L,
SCRTEXT_M, SCRTEXT_S or REPTEXT is used as the tool
tip.

TOOLTIP
Determines the text to be used as the tool tip for the column. You
should assign a value to this field if it does not have a Data Dictionary
reference.

INTTYPE ABAP data type

SP_GROUP
You use the group key (char(4)) to group several fields together. On
the dialog box for defining a layout, the user can then limit the list of
hidden columns to this group.

B.2.2. Building Field Catalog Manually

 The work in this procedure is just filling the internal table for the field catalog.
We have seen the structure of a field catalog above. To achieve filling the field
catalog correctly, one must at least fill the following fields of the field catalog
structure for each column of the list:

Output table fields with
DDIC reference

Output table fields without
DDIC reference

Explanation

FIELDNAME FIELDNAME Name of the field of the
internal output table

REF_TABLE Name of the DDIC reference
structure

REF_FIELD Name of the DDIC reference
field (only needed if other
than FIELDNAME)

 INTTYPE ABAP data type of the field
of the internal output table

 OUTPUTLEN Column width

 COLTEXT Column header

 SELTEXT Column description in
column selection for layout

Code Part 6 – Preparing field catalog manually

FORM prepare_field_catalog CHANGING pt_fieldcat TYPE lvc_t_fcat .

DATA ls_fcat type lvc_s_fcat .

ls_fcat-fieldname = 'CARRID' .
ls_fcat-inttype = 'C' .
ls_fcat-outputlen = '3' .
ls_fcat-coltext = 'Carrier ID' .
ls_fcat-seltext = 'Carrier ID' .
APPEND ls_fcat to pt_fieldcat .

CLEAR ls_fcat .
ls_fcat-fieldname = 'CONNID' .
ls_fcat-ref_table = 'SFLIGHT' .
ls_fcat-ref_table = 'CONNID' .
ls_fcat-outputlen = '3' .
ls_fcat-coltext = 'Connection ID' .
ls_fcat-seltext = 'Connection ID' .
APPEND ls_fcat to pt_fieldcat .

ENDFORM .

B.2.3. Building Field Catalog Semi-Automatically
 It is a boring work to fill and append rows for all columns of our list. And it is
not flexible to proceed with automatically generating of the field catalog. Fortunately,
there is a middle ground as generating the field catalog semi-automatically.
 This procedure requires a function module to call. We pass the name of the
structure to be the template and the function module generates a field catalog for us.
After getting the generated field catalog, we loop at it and change whatever we want.

The name of the function module is “LVC_FIELDCATALOG_MERGE”. Here is an example
coding to illustrate semi-automatic field catalog generation procedure.

FORM prepare_field_catalog CHANGING pt_fieldcat TYPE lvc_t_fcat .

DATA ls_fcat type lvc_s_fcat .

 CALL FUNCTION 'LVC_FIELDCATALOG_MERGE'
 EXPORTING
 i_structure_name = 'SFLIGHT'
 CHANGING
 ct_fieldcat = pt_fieldcat[]
 EXCEPTIONS
 inconsistent_interface = 1
 program_error = 2
 OTHERS = 3.
 IF sy-subrc <> 0.
*--Exception handling
 ENDIF.

 LOOP AT pt_fieldcat INTO ls_fcat .

 CASE pt_fieldcat-fieldname .
 WHEN 'CARRID' .
 ls_fcat-outpulen = '10' .
 ls_fcat-coltext = 'Airline Carrier ID' .
 MODIFY pt_fieldcat FROM ls_fcat .
 WHEN 'PAYMENTSUM' .
 ls_fcat-no_out = 'X' .
 MODIFY pt_fieldcat FROM ls_fcat .
 ENDCASE .

 ENDLOOP .

ENDFORM .

Code Part 7 – Preparing field catalog semi-automatically

 In the sample code above, firstly a field catalog is generated. It is filled with
respect to <structure_name> (e.g. ‘SFLIGHT’). After filling, we have changed the
output length and column text for a column (here ‘CARRID’) and make another column
(‘PAYMENTSUM’) not to be displayed.
 Now that, I can hear the question “What would happen if I both pass a
structure name to the parameter ‘I_STRUCTURE_NAME’ and a table to the parameter
‘IT_FIELDCATALOG’?”. Of course, the method gives a priority to one and it is the
name of the structure passed to the parameter ‘I_STRUCTURE_NAME’ which has the
priority.
 More about what you can do with field catalog will be discussed in
“Additional Functionalities” sections.

B.3. Layout Adjustments
 It comes now painting our ALV Grid in a general aspect. To define general
appearance of our ALV Grid we fill a structure of type “LVC_S_LAYO”. Here is the
table containing fields and their functionalities serviced by this adjustment.

Field name Description Value range

CWIDTH_OPT If this field is set, the ALV Grid Control optimizes
the column width. You can then see the column
header and the contents of the cells of this column.

SPACE, 'X'

SMALLTITLE If this field is set, the title size in the grid control is
set to the font size of the column header.

SPACE, 'X'

GRID_TITLE Title between grid control and toolbar Char string of max. 70

NO_HEADERS If this field is set, column headers are hidden. SPACE, 'X'

NO_HGRIDLN If this field is set, columns are displayed without
horizontal grid lines.

SPACE, 'X'

NO_MERGING If this field is set, cells are not merged when a
column is sorted.

SPACE, 'X'

NO_ROWMARK If this field is set, the button at the beginning of a
row is hidden in selection modes cell selection (
SEL_MODE = 'D') and column/row selection (
SEL_MODE = 'A').

SPACE, 'X'

NO_TOOLBAR If this field is set, the toolbar is hidden. SPACE, 'X'

NO_VGRIDLN If this field is set, columns are displayed without
vertical grid lines.

SPACE, 'X'

SEL_MODE Set the selection mode (see table at C.4.). SPACE, 'A', 'B', 'C', 'D'

EXCP_CONDS If this field is set, the ALV also shows an exception
in the (sub)totals line. As the color for this
exception, the ALV uses the smallest exception
value ('1': red, '2': yellow, '3' green) of the rows to
which the (sub)total refers.

SPACE, 'X'

EXCP_FNAME Field name of the output table for displaying an
exception

Char string of max. 30

EXCP_LED The exception is not displayed as a traffic light, but
as an LED.

SPACE, 'X'

EXCP_ROLLN Name of a data element. The F1 help for this data
element is then called for the exception column. In
addition, the long field label of the element is
displayed as the tool tip for this column.

Char string of max. 30

CTAB_FNAME Field name in output table for coloring cells Char string of max. 30

INFO_FNAME Field name in output table for coloring rows Char string of max. 30

ZEBRA If this field is set, the list shows a striped pattern in
the print preview and when it is printed.

SPACE, 'X'

NO_TOTARR The ALV Grid Control displays arrows in the totals
line and the subtotals line that additionally indicate
the totaling area. Set this parameter to suppress
these arrows.

SPACE, 'X'

NO_TOTEXP An icon displayed at the beginning of a (sub)totals
line indicates whether the line has been expanded
or not. Set this parameter to suppress this icon.

SPACE, 'X'

NO_TOTLINE If this field is set, only subtotals, but no totals, are
displayed.

SPACE, 'X'

NUMC_TOTAL If this field is set, the user can calculate totals for
fields of data type NUMC (normally, users are not
allowed to do this).

SPACE, 'X'

TOTALS_BEF If this field is set, the ALV displays totals calculated
as the first rows in the grid control. Subtotals are
displayed before a new value of the subtotals
criterion.

SPACE, 'X'

DETAILINIT If this field is set, the detail screen also shows
columns with initial values.

SPACE, 'X'

DETAILTITL Title in the title bar of the detail screen. Char string of max. 30

S_DRAGDROP Structure for Drag & Drop settings

KEYHOT If this field is set, all key fields are hotspot-
sensitive. If a key field is clicked once, event
hotspot_click is triggered.

SPACE, 'X'

SGL_CLK_HD Enables the single click on column header
function. This function sorts the list in ascending
order when the column is clicked for the first time,
and then in descending order when the column is
clicked a second time.

SPACE, 'X'

STYLEFNAME You use this field to pass the name of the cell table
for displaying cells as pushbuttons.

Char string of max. 30

C

 FORM prepare_layout CHANGING ps_layout TYPE lvc_s_layo.

ps_layout-zebra = 'X' .
ps_layout-grid_title = 'Flights' .
ps_layout-smalltitle = 'X' .

ENDFORM. " prepare_layout
ode Part 8 – Filling layout structure

http://help.sap.com/saphelp_erp2004/helpdata/en/ee/c8e080d52611d2b468006094192fe3/content.htm

B.4. Printing Adjustments
 We handle printing adjustments via a structure to be passed to the parameter
“is_print” of the method “set_table_for_first_display”. The structure is as
follows:

Field name Description Value range

GRPCHGEDIT Enables user-definable group change
editing for the print preview mode. If this
field is set, the jump to the SAP List Viewer
is configured accordingly. On the sort dialog
box, the user can then determine how a
sorting criterion value change is indicated
graphically: as a page break or as an
underline.

Using the sort table you can dynamically
set this formatting.

SPACE, 'X'

NO_COLWOPT The ALV Grid Control sets all columns to
their optimum width before the list is printed
or displayed in the print preview. If you set
this parameter, this default setting is
overridden.

SPACE, 'X'

PRNTLSTINF Prints list information. If this field is set,
information on sorting, subtotals and filters
defined as well as data statistics are printed
at the beginning of the list.

SPACE, 'X'

PRNT_TITLE Specifies the time at which the grid title is to
be printed.

0-3 with the following
meaning:

• 0: Before the event
PRINT_TOP_OF_LI
ST

• 1: After the event
PRINT_TOP_OF_LI
ST

• 2: Before the event
PRINT_TOP_OF_PA
GE

• 3: After the event
PRINT_TOP_OF_PA
GE

RESERVELNS Number of reserved rows for event
print_end_of_page. If no number is
specified, the text specified there is
overwritten by the list.

Natural number

http://help.sap.com/saphelp_erp2004/helpdata/en/ba/e92737739ce038e10000009b38f889/content.htm
http://help.sap.com/saphelp_erp2004/helpdata/en/ee/c8e071d52611d2b468006094192fe3/content.htm

 The print output of the field “PRNTLSTINF” is not visible in the print preview
of the ALV Grid. If you create a spool request first, you can check the final list layout
in transaction SP01.

B.5. Excluding Unwanted Standard Function Buttons
 In your list, you may want to exclude some of the standard function buttons
since they are not useful for your list. To exclude those buttons, you fill a table of type
“UI_FUNCTIONS” and pass it to the parameter “IT_TOOLBAR_EXCLUDING” of the
method “set_table_for_first_display”. The function codes for the buttons may
be acquired by inspecting the constant attributes of the class “cl_gui_alv_grid” or
putting a break point into a method, like the event-handling method of the event
“after_user_command”, which deals with the ALV command.
 To hide the entire toolbar, you can set the field “NO_TOOLBAR” of the layout
structure to ‘X’.

FORM exclude_tb_functions CHANGING pt_exclude TYPE ui_functions .

 DATA ls_exclude TYPE ui_func.

 ls_exclude = cl_gui_alv_grid=>mc_fc_maximum .
 APPEND ls_exclude TO pt_exclude.
 ls_exclude = cl_gui_alv_grid=>mc_fc_minimum .
 APPEND ls_exclude TO pt_exclude.
 ls_exclude = cl_gui_alv_grid=>mc_fc_subtot .
 APPEND ls_exclude TO pt_exclude.
 ls_exclude = cl_gui_alv_grid=>mc_fc_sum .
 APPEND ls_exclude TO pt_exclude.
 ls_exclude = cl_gui_alv_grid=>mc_fc_average .
 APPEND ls_exclude TO pt_exclude.
 ls_exclude = cl_gui_alv_grid=>mc_mb_sum .
 APPEND ls_exclude TO pt_exclude.
 ls_exclude = cl_gui_alv_grid=>mc_mb_subtot .

ENDFORM .

Code Part 9 – Filling the table to exclude unwanted standard functions

 Here, names beginning with “MC_FC_” are names for functions directly and
the names beginning with “MC_MB_” are for the function menus including some
subfunctions as menu entries. By excluding one from the latter type, you exclude all
of the functions under it.

C. Non-Event Based Additional Functionalities
 Up to this point, we are able to display our list in ALV Grid format. However,
since requirements never end, we will want it to do more. In this section, we will go
beyond the basics and get much deeper to specifically deal with additional
functionalities that ALV Grid control can handle.

C.1. Changing Field Catalog or Layout after First Display
 During runtime, it is possible to set a new layout or a new field catalog after
first displaying of the list. These components have set/get methods to accomplish this.
 For the field catalog : get_frontend_fieldcatalog
 set_frontend_fieldcatalog
 For the layout : get_frontend_layout
 set_frontend_layout

 Using these methods, anytime at execution, you can get the contents and
modify them.

.. ..

DATA ls_fcat TYPE lvc_s_fcat .
DATA lt_fcat TYPE lvc_t_fcat .
DATA ls_layout TYPE lvc_s_layo .

 CALL METHOD gr_alvgrid->get_frontend_fieldcatalog
 IMPORTING
 et_fieldcatalog = lt_fcat[] .

 LOOP AT lt_fcat INTO ls_fcat .
 IF ls_fcat-fieldname = 'PAYMENTSUM' .
 ls_fcat-no_out = space .
 MODIFY lt_fcat FROM ls_fcat .
 ENDIF .
 ENDLOOP .

 CALL METHOD gr_alvgrid->set_frontend_fieldcatalog
 EXPORTING
 it_fieldcatalog = lt_fcat[] .

 CALL METHOD gr_alvgrid->get_frontend_layout
 IMPORTING
 es_layout = ls_layout .

 ls_layout-grid_title = 'Flights (with Payment Sums)' .

 CALL METHOD gr_alvgrid->set_frontend_layout
 EXPORTING
 is_layout = ls_layout .
.. ..

Code Part 10 – Changing field catalog and layout after first display

C.2. Setting Sort Conditions
 It is possible to set sort conditions for the table data. This is achieved by filling
an internal table of structure “LVC_T_SORT” which consists of the sort criteria. To

http://help.sap.com/saphelp_erp2004/helpdata/en/0a/b55306d30911d2b467006094192fe3/content.htm
http://help.sap.com/saphelp_erp2004/helpdata/en/0a/b55330d30911d2b467006094192fe3/content.htm

have an initial sorting, pass it to the parameter “IT_SORT” of the method
“set_table_for_first_display”.

FORM prepare_sort_table CHANGING pt_sort TYPE lvc_t_sort .

 DATA ls_sort TYPE lvc_s_sort .

 ls_sort-spos = '1' .
 ls_sort-fieldname = 'CARRID' .
 ls_sort-up = 'X' . "A to Z
 ls_sort-down = space .
 APPEND ls_sort TO pt_sort .

 ls_sort-spos = '2' .
 ls_sort-fieldname = 'SEATSOCC' .
 ls_sort-up = space .
 ls_sort-down = 'X' . "Z to A
 APPEND ls_sort TO pt_sort .

ENDFORM. " prepare_sort_table

Code Part 11 – Preparing the table for sorting settings

 We have two important points to tell about this topic. First one is that, be
ready for a short dump if any one of the fields given to be sorted is not in the content
of the field catalog. Secondly, when you make ALV Grid to sort data, by default it
vertically merges fields having the same content. To avoid from this for all of the
columns, you can set “no_merging” field of the layout structure to ‘X’. If you want to
disable merging for just some columns, set “no_merging” field of the field catalog
row corresponding to that column.
 You can get and set sort criteria applied whenever you want by using methods
“get_sort_criteria” and “set_sort_criteria”, respectively.

C.3. Filtering
 The procedure is like the one in sorting. Here, the type of the table you must
fill is “LVC_T_FILT”. Filling this table is similar to filling a RANGES variable.

C

m

FORM prepare_filter_table CHANGING pt_filt TYPE lvc_t_filt .

 DATA ls_filt TYPE lvc_s_filt .

 ls_filt-fieldname = 'FLDATE' .
 ls_filt-sign = 'E' .
 ls_filt-option = 'BT' .
 ls_filt-low = '20030101' .
 ls_filt-high = '20031231' .
 APPEND ls_filt TO pt_filt .

ENDFORM. " prepare_filter_table
ode Part 12 – Preparing the table for filter settings

You can get and set filtering criteria applied whenever you want by using
ethods “get_filter_criteria” and “set_filter_criteria”, respectively.

C.4. Making Selections
 It is generally required to select some cells, rows or columns in ALV Grid.
The structure of the control gives the opportunity to set different selection modes
through the value of the field “SEL_MODE” in the layout structure. Here are those
modes and their functionalities:

Value Mode Possible selections Comment

SPACE same as 'B' see 'B' Default setting

'A' Column and row
selection

• Multiple
columns

• Multiple rows

The user selects the
rows through
pushbuttons at the
left border of the grid
control.

'B' Simple selection, list
box

• Multiple
columns

• Multiple rows

'C' Multiple selection,
list box

• Multiple
columns

• Multiple rows

'D' Cell selection • Multiple
columns

• Multiple rows
• Any cells

The user selects the
rows through
pushbuttons at the
left border of the grid
control.

 Beyond setting this option, you can set “NO_ROWMARK” option to hide the mark
column, which is normally visible when the selection mode allows multiple row
selection.
 One point to notice here is that if you set your ALV Grid as to be editable, it
may override your selection mode regardless of your layout settings.
 After a selection is made, the rest being important about the developer is to
figure out what is selected. This will be essential if you implement your functions as
interacting with selections made. Certainly, ALV Grid tells this information. You use
methods:

a. GET_SELECTED_CELLS: This method returns the exact addresses of
selected cells in a table of type “LVC_T_CELL” via the output parameter
“et_cell”. The ALV Grid Control returns only the indexes of cells that
are selected individually. If an entire row or column is selected, the table
has no information about that row. For individually selected cells, you
will get the name of the column and the index of the row for each one.

b. GET_SELECTED_CELLS_ID: This method also returns the addresses
of selected cells. The difference is, first its output type is “LVC_T_CENO”
via the output parameter “et_cells” and it returns the IDs for columns
and rows of selected cells.

c. GET_SELECTED_ROWS: For the selection mode ‘A’, ‘C’ or ‘D’ you
can select rows. To get information about selected rows, this method is
utilized. It has two output table parameters. However, the parameter
“et_index_rows” is obsolete. The other parameter “et_row_no” is of
type “LVC_T_ROID” and returns row indexes for selected rows (but not
cells or columns) in it.

d. GET_SELECTED_COLUMNS: As understood so far, this method returns
information about selected columns. Its output table parameter
“et_index_columns” is of type “LVC_T_COL” and consist of the names
of selected columns.

 In your program, you may want to make some cells, rows or columns to be
selected during execution. For those purposes, you can use “SET” versions of
methods above whose interfaces are similar but the direction is reverse.
 After a screen transition, when you come back to the screen with your ALV,
your selections may be lost. You can utilize “GET” methods before transition, to
backup those information and after returning to the screen, you can use “SET”
methods to restore them.

C.5. Retrieving and Setting Scroll Status Info
 Besides setting some parts selected, you may also want to get and set scroll
status information. We have a pair of get and set methods for this purpose.

a. GET_SCROLL_INFO_VIA_ID: This method is used to retrieve scroll
info. It has three output parameters which are “es_col_info” having
column name being displayed first on the left, “es_row_no” having
index of the row displayed first at the top, and “es_row_info” which is
obsolete.

b. SET_SCROLL_INFO_VIA_ID: This method is used for setting the
scroll status of the list. It has the same interface with the “get” version.
That’s why they can be used correspondingly.

 Like in selections, after a screen transition, when you come back to the screen
with your ALV, the scroll information may be lost. You can utilize “GET” method
before transition, to backup the scroll information and after returning to the screen,
you can use “SET” method to restore it.

C.6. Coloring
 It is possible to paint some cells, rows, and columns through the ALV Grid
control. Basically, with no additional effort, if you set a column to be a key column it
is automatically colored. To paint we have the following procedures.

C.6.1. Coloring an Entire Column
 To make an entire column be painted with the color you want, you can use the
“emphasize” option of the field catalog. Simply assign a color code to this field of the
row added for your column. Color codes are constructed as follows:

Cxyz

Color numbers

1/0: inverse on/off

1/0: intensified on/off

Color numbers are:

x Color Intended for
1 gray-blue headers
2 light gray list bodies
3 yellow totals
4 blue-green key columns
5 green positive threshold value
6 red negative threshold value
7 orange Control levels

 The “key setting” made via the field “key” of the field catalog overrides this
setting. So if you want this color to be colored different than the key color, you should
set the “key” field to space while generating the field catalog. However, then there
may be some side effects on column orders. You can set the column order as you want
at the frontend. But if this is not suitable for you, then unset all key settings and do all
coloring and ordering as you want. Be careful that the function module generating the
field catalog will always set the key properties of key fields.

C.6.2. Coloring an Entire Row
 Coloring a row is a bit (really a bit) more complicated. To enable row
coloring, you should add an additional field to your list data table. It should be of
character type and length at least 4. This field will contain the color code for the row.
So, let’s modify declaration of our list data table “gt_list”.

C

s
h

*--- Internal table holding list data
DATA BEGIN OF gt_list OCCURS 0 .
INCLUDE STRUCTURE SFLIGHT .
DATA rowcolor(4) TYPE c .
DATA END OF gt_list .
ode Part 13 – Adding the field that will contain row color data

As you guess, you should fill the color code to this field. Its format will be the
ame as explained before at section C.6.3. But how will ALV Grid know that you
ave loaded the color data for the row to this field. So, you make it know this by

passing the name of the field containing color codes to the field “INFO_FNAME” of the
layout structure.
e.g.
ps_layout-info_fname = <field_name_containing_color_codes>. “e.g. ‘ROWCOLOR’

 You can fill that field anytime during execution. But, of course, due to the
flow logic of screens, it will be reflected to your list display as soon as an ALV
refresh occurs.
 You can color an entire row as described in the next section. However, this
method is less time consuming.

C.6.3. Coloring Individual Cells
 This is the last point about coloring procedures for the ALV Grid. The
procedure is similar to coloring an entire row. However, since an individual cell can
be addressed with two parameters we will need something more. What is meant by
“more” is a table type structure to be included into the structure of the list data table.
It seems strange, because including it will make our list data structure deep. But
anyhow ALV Grid control handles this.
 The structure that should be included must be of type “LVC_T_SCOL”. If you
want to color the entire row, this inner table should contain only one row with field
“fname” is set to space, some color value at field “col”, “0” or “1” at fields “int”
(intensified) and “inv” (inverse).
 If you want to color individual cells, then for each cell column, append a line
to this inner table which also contains the column name at field “fname”. It is obvious
that you can color an entire column by filling this inner table with a row for that
column for each row in the list data table. But, it is also obvious that, this will be more
time consuming than the method at section C.6.1.
 Again key field coloring will override your settings. That’s why, we have
another field in this inner table called “nokeycol”. For each field represented in the
inner table, set this field to ‘X’ to prevent overriding of key color settings.
 In this procedure, again we must tell the control the name of the inner table
containing color data. The field “CTAB_FNAME” of the layout structure is used for this
purpose.

Code Part 14 – Adding inner table that will contain cell color data

*--- Internal table holding list data
DATA BEGIN OF gt_list OCCURS 0 .
INCLUDE STRUCTURE SFLIGHT .
DATA rowcolor(4) TYPE c .
DATA cellcolors TYPE lvc_t_scol .
DATA END OF gt_list .

Code Part 15 – A sample code to make the cell at row 5 and column ‘SEATSOCC’ colored

DATA ls_cellcolor TYPE lvc_s_scol .
...
READ TABLE gt_list INDEX 5 .
ls_cellcolor-fname = 'SEATSOCC' .
ls_cellcolor-color-col = '7' .
ls_cellcolor-color-int = '1' .
APPEND ls_cellcolor TO gt_list-cellcolors .
MODIFY gt_list INDEX 5 .

 A juicy-brained guy may ask what happens if all these three procedures
applied for coloring at the same time. And again the same answer is given as there is a
priority among them. The priority order is: cell setting - row setting - column setting.
Beside these, key field setting must be handled.

C.7. Inserting Hyperlinks
 Inserting hyperlink fields is achieved by a source table containing hyperlinks
and handles to relate it to the list data. The hyperlinks table should be of the type
“LVC_T_HYPE”. For each field which will include hyperlinks you must add an “int4”
type field to your list data table. Those new fields will contain the handle to get
information from the hyperlink table. You state the field name which contains handle
for each field that will contain hyperlink, in the field catalog by putting the handle
name to the “WEB_FIELD” field for each column. OK, all this logic may be confusing;
all are fields, which one is the field that will contain the field with…. It will be now
good to add a sample code here.
 Assume we want to bring in hyperlinks in columns ‘CARRID’ and ‘CONNID’. So
we should add two more fields to our list data table:

C

C

*--- Internal table holding list data
DATA BEGIN OF gt_list OCCURS 0 .
INCLUDE STRUCTURE SFLIGHT .
DATA rowcolor(4) TYPE c .
DATA cellcolors TYPE lvc_t_scol .
DATA carrid_handle TYPE int4 .
DATA connid_handle TYPE int4 .
DATA END OF gt_list .
ode Part 16 – Two new fields to hold handle data each for the field that will contain hyperlink

Build your hyperlinks table. Remember that, its type must be “LVC_T_HYPE”.

*--- Hyperlinks table
FORM prepare_hyperlinks_table CHANGING pt_hype TYPE lvc_t_hype .

 DATA ls_hype TYPE lvc_s_hype .

 ls_hype-handle = '1' .
 ls_hype-href = 'http://www.company.com/carrids/car1' .
 APPEND ls_hype TO pt_hype .
 ls_hype-handle = '2' .
 ls_hype-href = 'http://www.company.com/carrids/car1' .
 APPEND ls_hype TO pt_hype .
 ls_hype-handle = '3' .
 ls_hype-href = 'http://www.company.com/carrids/car1' .
 APPEND ls_hype TO pt_hype .
 ls_hype-handle = '4' .
 ls_hype-href = 'http://www.company.com/connids/con11' .
 APPEND ls_hype TO pt_hype .
 ls_hype-handle = '5' .
 ls_hype-href = 'http://www.company.com/connids/con12' .

APPEND ls_hype TO pt_hype .

.. ..
ENDFORM .
ode Part 17 – Preparing hyperlinks with their handles

 We must state the field containing handle for each field. This is done while
generating your field catalog.
e.g.
While modifying field catalog entry for ‘CARRID’:
 ls_fieldcat-web_field = 'CARRID_HANDLE'.
And for ‘CONNID’:
 ls_fieldcat-web_field = 'CONNID_HANDLE'.

 When calling the method “set_table_for_first_display” pass the name
of the handle data table to the parameter “it_hyperlink”.
 While you are filling your list data, you should put handles in related fields.
Following sample code says that when clicked on a CARRID field containing ‘XX’ go
to the URL 'http://www.company.com/carrids/car1' and if it is a CONNID field
fulfilling the former condition and containing ‘01’, go to the URL
'http://www.company.com/connids/con11'. Here, the hyperlink table considered is the
table prepared in Code Part 15.

LOOP AT gt_list .
 IF gt_list-carrid = 'XX'.
 gt_list-carrid_handle = '1' .
 IF gt_list-connid = '01' .
 gt_list-connid_handle = '4' .
 ENDIF .
 MODIFY gt_list .
 ENDIF .
ENDLOOP .

Code Part 18 – Assigning handles to fields

C.8. Making Fields as Dropdown Menus

 Certainly, it will be nice to make some fields as dropdown menus. The
procedure for making a field as a dropdown menu is similar to making it to contain a
hyperlink. However, in this case, we do not give our table filled with handles directly
to the method “set_table_for_first_display”. The table for values must be of type
“LVC_T_DROP” and we will use the method “set_drop_down_table” to register our
handles table. To make an entire column as dropdown, just while generating the field
catalog; pass the handle number to field “DRDN_HNDL” for that field.
 e.g. ps_fcat-drdn_hndl = '1' .

 To make individual cells as dropdown, you must add a new field to contain
the handle, for each column field to be as dropdown. While filling your list data or
somewhere separate where you modify it, you fill these new fields with handles. To
match the fields containing handle information with the columns, we use again the
field catalog. We pass the name of our new field to the field “DRDN_FIELD” of the
field catalog structure for the column.
 e.g. For the example at the Code Part18:
 ps_fcat-drdn_field = 'PTYP_DD_HNDL' .

C

C

o

“
h
T
M
C
v
S
d

S
c

*--- Internal table holding list data
DATA BEGIN OF gt_list OCCURS 0 .
INCLUDE STRUCTURE SFLIGHT .
DATA rowcolor(4) TYPE c .
DATA cellcolors TYPE lvc_t_scol .
DATA carrid_handle TYPE int4 .
DATA connid_handle TYPE int4 .
DATA ptype_dd_hndl TYPE int4 .
DATA END OF gt list .
ode Part 19 – Adding a new field to contain handle for drilldown values
*--- Drilldown values
FORM prepare_drilldown_values.

 DATA lt_ddval TYPE lvc_t_drop .
 DATA ls_ddval TYPE lvc_s_drop .

 ls_ddval-handle = '1' .
 ls_ddval-value = 'JFK-12' .
 APPEND ls_ddval TO lt_ddval .
 ls_ddval-handle = '1' .
 ls_ddval-value = 'JSF-44' .
 APPEND ls_ddval TO lt_ddval .
 ls_ddval-handle = '1' .
 ls_ddval-value = 'KMDA-53' .
 APPEND ls_ddval TO lt_ddval .
 ls_ddval-handle = '1' .
 ls_ddval-value = 'SS3O/N' .
 APPEND ls_ddval TO lt_ddval .

 CALL METHOD gr_alvgrid->set_drop_down_table
 EXPORTING
 it_drop_down = lt_ddval .

ENDFORM. " prepare_drilldown_values
ode Part 20 – Preparing values for the dropdown menu with the handle ‘1’

As you examine at Code Part 19, after preparing the values table, we register
ur table by the method “set_drop_down_table”.

C.9. Managing variants
You can manage display variants by using parameters, “is_variant” and

i_save” of “set_table_for_first_display”. Here are options for variant
andling. <structure_name> is the variant-defining structure of type “DISVARIANT”.
he field “report” in this structure should contain the value of “sy-repid.”
ode is_variant i_save

hange current display
ariant SPACE SPACE

elect and change current
isplay variant <structure_name> SPACE

elect, change and save
urrent display variant <structure_name>

‘U’: Only user-specific
‘X’: Only global
‘A’: Both

D. Event Based Additional Functionalities
 As being developed by object-oriented methodology, ALV Grid control has
some events that are triggered during interaction between the user. These events are
used to utilize some additional functionalities of the ALV Grid. For these types of
functionalities, we require a class to be implemented (generally local in our program)
to be the event handler for the ALV Grid instance. It is assumed in this tutorial that
the object- oriented perspective of ABAP programming is known. We will not deal
with the syntax and logic on how to define and implement a local class, why to
register an event handler method to handle an event, etc…
 Here are some of the events of ALV Grid control. This table is taken from the
online SAP Library. The column “HTML” shows that whether the related event is
supported at SAP GUI for HTML. “9” means that it is applicable, “X” is for non-
applicable ones and “(9)” is used for restricted-applicability.

User-defined Text Output

Event Application HTML

print_end_of_list Define output text to be printed at the end of the
entire list 9

print_top_of_list Define output text to be printed at the beginning
of the entire list 9

print_end_of_page Define output text to be printed at the end of
each page 9

print_top_of_page Define output text to be printed at the beginning
of each page 9

subtotal_text Define self-defined subtotals texts 9

 Mouse-controlled Actions in the Grid Control

Event Application HTML

button_click Query a click on a pushbutton in the ALV Grid
Control 9

double_click Query a double-click on a cell of the ALV Grid
control 9

hotspot_click Query a hotspot click on columns defined for
this purpose in advance 9

onDrag Collect information when elements of the ALV
Grid Control are dragged X

onDrop Process information when elements of the ALV
Grid Control are dropped X

onDropComplete Perform final actions after successful
Drag&Drop X

onDropGetFlavor Distinguish between options for Drag&Drop
behavior X

 Processing of Self-defined and Standard Functions

Event Application HTML

before_user_command Query self-defined and standard function codes 9

user_command Query self-defined function codes 9

after_user_command Query self-defined and standard function codes 9

 Definition of Self-defined Functions

Event Application HTML

toolbar Change, delete or add GUI elements in the
toolbar 9

menu_button Define menus for menu buttons in the toolbar 9

context_menu_request Change context menu X

onf1 Define self-defined F1 help (9)

D.1. General Scheme for the Event Handler Class
 Here is a sample code to illustrate a general scheme for our local class.

CLASS lcl_event_handler DEFINITION .
 PUBLIC SECTION .
 METHODS:
*To add new functional buttons to the ALV toolbar
 handle_toolbar FOR EVENT toolbar OF cl_gui_alv_grid
 IMPORTING e_object e_interactive ,
*To implement user commands
 handle_user_command
 FOR EVENT user_command OF cl_gui_alv_grid
 IMPORTING e_ucomm ,
*Hotspot click control
 handle_hotspot_click
 FOR EVENT hotspot_click OF cl_gui_alv_grid
 IMPORTING e_row_id e_column_id es_row_no ,
*Double-click control
 handle_double_click
 FOR EVENT double_click OF cl_gui_alv_grid
 IMPORTING e_row e_column ,
*To be triggered before user commands
 handle_before_user_command
 FOR EVENT before_user_command OF cl_gui_alv_grid
 IMPORTING e_ucomm ,

*To be triggered after user commands
 handle_after_user_command
 FOR EVENT context_menu_request OF cl_gui_alv_grid
 IMPORTING e_object
*Controlling data changes when ALV Grid is editable
 handle_data_changed
 FOR EVENT data_changed OF cl_gui_alv_grid
 IMPORTING er_data_changed ,
*To be triggered after data changing is finished
 handle_data_changed_finished
 FOR EVENT data_changed_finished OF cl_gui_alv_grid
 IMPORTING e_modified ,
*To control menu buttons
 handle_menu_button
 FOR EVENT menu_button OF cl_gui_alv_grid
 IMPORTING e_oject e_ucomm ,
*To control button clicks
 handle_button_click
 FOR EVENT button_click OF cl_gui_alv_grid
 IMPORTING e_oject e_ucomm .
 PRIVATE
ENDCLASS.

SECTION.

CLASS lcl_event_handler IMPLEMENTATION .
*Handle Toolbar
 METHOD handle_toolbar.
 PERFORM handle_toolbar USING e_object e_interactive .
 ENDMETHOD .
*Handle Hotspot Click
 METHOD handle_hotspot_click .
 PERFORM handle_hotspot_click USING e_row_id e_column_id es_row_no .
 ENDMETHOD .
*Handle Double Click
 METHOD handle_double_click .
 PERFORM handle_double_click USING e_row e_column es_row_no .
 ENDMETHOD .
*Handle User Command
 METHOD handle_user_command .
 PERFORM handle_user_command USING e_ucomm .
 ENDMETHOD.
*Handle After User Command
 METHOD handle_context_menu_request .
 PERFORM handle_context_menu_request USING e_object .
 ENDMETHOD.
*Handle Before User Command
 METHOD handle_before_user_command .
 PERFORM handle_before_user_command USING e_ucomm .
 ENDMETHOD .
*Handle Data Changed
 METHOD handle_data_changed .
 PERFORM handle_data_changed USING er_data_changed .
 ENDMETHOD.
*Handle Data Changed Finished
 METHOD handle_data_changed_finished .
 PERFORM handle_data_changed_finished USING e_modified .
 ENDMETHOD .
*Handle Menu Buttons
 METHOD handle_menu_button .
 PERFORM handle_menu_button USING e_object e_ucomm .
 ENDMETHOD .
*Handle Button Click
 METHOD handle_button_click .
 PERFORM handle_button_click USING e_object e_ucomm .
 ENDMETHOD .

ENDCLASS .

Code Part 21 – Local event handler class definition and implementation

 Here in the implementation part, we are branching to forms to get rid of
restrictions driven by the OO context. It is your choice to branch or directly write your
codes into the method.
 Here in local class coding, just implement the methods which will handle
events that you want to be triggered. In this tutorial, we will prefer to deal with topics
as functionalities rather than explaining events one-by-one. Having an event handler
class we are now able to instantiate it and register its methods to handle ALV Grid
instance events.

Code Part 22 – Creating event handler instance and registering handler methods

DATA gr_event_handler TYPE REF TO lcl_event_handler .
.. ..

*--Creating an instance for the event handler
 CREATE OBJECT gr_event_handler .

*--Registering handler methods to handle ALV Grid events
 SET HANDLER gr_event_handler->handle_user_command FOR gr_alvgrid .
 SET HANDLER gr_event_handler->handle_toolbar FOR gr_alvgrid .
 SET HANDLER gr_event_handler->handle_menu_button FOR gr_alvgrid .
 SET HANDLER gr_event_handler->handle_double_click FOR gr_alvgrid .
 SET HANDLER gr_event_handler->handle_hotspot_click FOR gr_alvgrid .
 SET HANDLER gr_event_handler->handle_button_click FOR gr_alvgrid .
 SET HANDLER gr_event_handler->handle_before_user_command
 FOR gr_alvgrid .
 SET HANDLER gr_event_handler->handle_context_menu_request
 FOR gr_alvgrid .
 SET HANDLER gr_event_handler->handle_data_changed FOR gr_alvgrid .
 SET HANDLER gr_event_handler->handle_data_changed_finished
 FOR gr_alvgrid .

D.2. Hotspot Clicking
 From field catalog field definitions, we know that we can make some columns
to respond to single clicks as hotspots by setting the value for the field “HOTSPOT” to
‘X’ while generating the field catalog. After clicking, the event “hotspot_click” is
triggered. This event has three parameters in its interface. The parameter “e_row_id”
is obsolete. Other two parameters are “es_row_no” which is of type “LVC_S_ROID”
and passes information about the row index at “es_row_no-row_id”, and
“e_column_id” of type “LVC_S_COL” which returns the column fieldname at
“e_column_id-fieldname”. Utilizing these parameters you know where the user
clicked and trigger your action.

C

 FORM handle_hotspot_click USING i_row_id TYPE lvc_s_row
 i_column_id TYPE lvc_s_col
 is_row_no TYPE lvc_s_roid.

 READ TABLE gt_list INDEX is_row_no-row_id .
 IF sy-subrc = 0 AND i_column_id-fieldname = 'SEATSOCC' .
 CALL SCREEN 200 . "Details about passenger-seat matching
 ENDIF .

 ENDFORM .
ode Part 23 – An example implementation for the method, handling the event “hotspot_click”

D.3. Double Clicking
 As you can guess, handling a double-click is very similar to handle a hotspot
click. You do nothing additional to make a field double-click intensive; that is you
need not set some option in the field catalog. After double-click event occurs, the
method handling it will return again three parameters and again one of them, “e_row”,
is obsolete. The parameters “e_column” and “es_row_no” are similar to the
parameters of the event “hotpot_click”.

 FORM handle_double_click USING i_row TYPE lvc_s_row
 i_column TYPE lvc_s_col
 is_row_no TYPE lvc_s_roid.

 READ TABLE gt_list INDEX is_row_no-row_id .
 IF sy-subrc = 0 AND i_column-fieldname = 'SEATSOCC' .
 CALL SCREEN 200 . "Details about passenger-seat matching
 ENDIF .

 ENDFORM .

Code Part 24 – An example implementation for the method, handling the event “double_click”

D.4. Pushbuttons on the List
 To make a cell to be displayed as a pushbutton, we have two steps. Firstly,
insert a new inner table of type “LVC_T_STYL” into your list data table.

Code Part 25 – Inserting an inner table to store cell display styles

 Fill this inner table for each field to be displayed as pushbutton.

Code Part 26 – A sample code to make the cell at row 7 and column ‘SEATSMAX’ displayed as pushbutton

*--- Internal table holding list data
DATA BEGIN OF gt_list OCCURS 0 .
INCLUDE STRUCTURE SFLIGHT .
DATA rowcolor(4) TYPE c .
DATA cellcolors TYPE lvc_t_scol .
DATA carrid_handle TYPE int4 .
DATA connid_handle TYPE int4 .
DATA cellstyles TYPE lvc_t_styl .
DATA END OF gt_list .

DATA ls_style TYPE lvc_s_styl .
...
READ TABLE gt_list INDEX 7 .
ls_style-fieldname = 'SEATSMAX' .
ls_style-style = cl_gui_alv_grid=>mc_style_button .
APPEND ls_style TO gt_list-cellstyles .
MODIFY gt_list INDEX 7 .

 As usual, we state our list data table field related with styles in the layout
structure at field ‘STYLEFNAME’.
 e.g. ps_layout-stylefname = 'CELLSTYLES' .
 Button click event is handled like hotspot click via the event “button_click”
through its parameters “es_col_id” and “es_row_no” which contain the address of
the clicked pushbutton cell.

D.5. Adding Your Own Functions
 ALV Grid control has an open door letting you to add your own functions
triggered by a button press on the ALV toolbar. For this, we mainly utilize two of
ALV Grid events. We use the event “toolbar” to add the button and the event
“user_command” to implement the new function.
 In the method handling the “toolbar” event, we define a new button by filling a
structure and appending it to the table attribute “mt_toolbar” of the object to whose
reference we can reach via the parameter “e_object” of the event.

Code Part 27 – Filling the structure for two new buttons

 FORM handle_toolbar USING i_object TYPE REF TO cl_alv_event_toolbar_set .

 DATA: ls_toolbar TYPE stb_button.

 CLEAR ls_toolbar.
 MOVE 3 TO ls_toolbar-butn_type.
 APPEND ls_toolbar TO i_object->mt_toolbar.

 CLEAR ls_toolbar.
 MOVE 'PER' TO ls_toolbar-function. "#EC NOTEXT
 MOVE icon_display_text TO ls_toolbar-icon.
 MOVE 'Passenger Info'(201) TO ls_toolbar-quickinfo.
 MOVE 'Passenger Info'(201) TO ls_toolbar-text.
 MOVE ' ' TO ls_toolbar-disabled. "#EC NOTEXT
 APPEND ls_toolbar TO i_object->mt_toolbar.

 CLEAR ls_toolbar.
 MOVE 'EXCH' TO ls_toolbar-function. "#EC NOTEXT
 MOVE 2 TO ls_toolbar-butn_type.
 MOVE icon_calculation TO ls_toolbar-icon.
 MOVE 'Payment in Other Currencies'(202) TO ls_toolbar-quickinfo.
 MOVE ' ' TO ls_toolbar-text.
 MOVE ' ' TO ls_toolbar-disabled. "#EC NOTEXT
 APPEND ls_toolbar TO i_object->mt_toolbar.

 ENDFORM .

 The fields of the structure we fill are as follows:

Field Description
FUNCTION The function code for the function
BUTN_TYPE Button type that will be added to the toolbar. Available button types are:

0 Button (normal)
1 Menu and default button
2 Menu
3 Separator
4 Radio button
5 Checkbox
6 Menu entry

ICON Icon for the button (optional)
TEXT Text for the button (optional)
QUICKINFO Quick info for the button (optional)
DISABLED Adds the button as disabled
 In the Code Part 22, we are adding a separator line and two buttons one of
which is a normal button whereas the other is a menu button. To handle a menu button
which as added by choosing ‘1’ or ‘2’ as the button type, we must also implement
some coding at the method handling the event “menu_button” to define functions as

to be subentries. The functions of these subentries are also handled under the event
“user_command”.

FORM handle_menu_button USING i_object TYPE REF TO cl_ctmenu
 i_ucomm TYPE syucomm .

 CASE i_ucomm .
 WHEN 'EXCH' .
 CALL METHOD i_object->add_function
 EXPORTING
 fcode = 'EU'
 text = 'Euro' .
 CALL METHOD i_object->add_function
 EXPORTING
 fcode = 'TRL'
 text = 'Turkish Lira' .

 ENDCASE .
ENDFORM. " handle_menu_button

Code Part 28 – Adding two functions to be subentries for the menu button with function code ‘EXCH’

 Now, to implement what to be executed when our button is pressed or our
subentry is selected we need to program our functions in the method handling the
event “user_command”.

C

FORM handle_user_command USING i_ucomm TYPE syucomm .

 DATA lt_selected_rows TYPE lvc_t_roid .
 DATA ls_selected_row TYPE lvc_s_roid .

 CALL METHOD gr_alvgrid->get_selected_rows
 IMPORTING
 et_row_no = lt_selected_rows .
 READ TABLE lt_selected_rows INTO ls_selected_row INDEX 1 .
 IF sy-subrc ne 0 .
 MESSAGE s000(su) WITH 'Select a row!'(203) .
 ENDIF .
 CASE i_ucomm .
 WHEN 'CAR' .
 READ TABLE gt_list INDEX ls_selected_row-row_id .
 IF sy-subrc = 0 .
 CALL FUNCTION 'ZDISPLAY_CARRIER_INFO'
 EXPORTING carrid = gt_list-carrid
 EXCEPTIONS carrier_not_found = 1
 OTHERS = 2.
 IF sy-subrc NE 0 .
*--Exception handling
 ENDIF .
 ENDIF .
 WHEN 'EU' .
 READ TABLE gt_list INDEX ls_selected_row-row_id .
 IF sy-subrc = 0 .
 CALL FUNCTION 'ZPOPUP_CONV_CURR_AND_DISPLAY'
 EXPORTING monun = 'EU'
 quant = gt_list-paymentsum.
 ENDIF .

 ENDCASE .
ENDFORM .
ode Part 29 – Implementing functioning codes for new functions

 As you can see, we are using the method “get_selected_rows” to get which
row is selected. Since the button with function ‘EXCH’ branches into subfunctions, we
do not implement anything for it. Instead, we implement functional codes for
subfunctions.
 After all, to make ALV show our additional buttons, we must call the method
“set_toolbar_interactive” for the ALV Grid instance after the instance is created.
 e.g. CALL METHOD gr_alvgrid->set_toolbar_interactive .

D.6. Overriding Standard Functions
 The ALV Grid control also gives the opportunity to override its standard
functions. For this purpose, we utilize the event “before_user_command” and the
method which sets ALV user command, called “set_user_command”. At
“before_user_command”, you control the user command to process your own
function and then use the method “set_user_command” to set the ALV Grid user
command to space to avoid ALV Grid execute further with the standard function.

Code Part 30 – Overriding the standard ALV Grid function ‘&INFO’.

FORM handle_before_user_command USING i_ucomm TYPE syucomm .

 CASE e_ucomm .

 WHEN '&INFO' .
 CALL FUNCTION 'ZSFLIGHT_PROG_INFO' .
 CALL METHOD gr_alvgrid->set_user_command
 EXPORTING i_ucomm = space.
 ENDCASE .

ENDFORM .

D.7. Context Menus
 The event related with context menus is “context_menu_request”. When
you right click on the ALV Grid area the event-handling method is triggered. Under
this method you can add entries in the context menu. You can utilize
“GET_SELECTED…” methods to retrieve which cell, row or column the user has right-
clicked. Adding functions to the context menu is accomplished as in adding
subfunctions to non-standard menu buttons as described in section D.5.

C

s

FORM handle_context_menu_request USING i_object TYPE REF TO cl_ctmenu .

*--Here you can add some logic to retrive what was clicked and
*--decide what to add to the context menu
 CALL METHOD i_object->add_function
 EXPORTING
 fcode = 'CREA'
 text = 'Create Booking'(204) .

ENDFORM .
ode Part 31 – Adding an entry for the context menu

You can add a separator by “add_separator”, a menu by “add_menu”, and a
ubmenu by “add_submenu” methods.

 You can also use “disable_functions” to disable some of the functions on
the menu, “enable_functions” to enable, “hide_functions” to hide them and
“show_functions” to make them displayed again. You pass the list of the function
codes to those methods via the parameter “fcodes”. These are all about the class
“CL_CTMENU” since the context menu instantiates that class. For further functionalities
refer to that class.

DATA: LT_FCODES TYPE UI_FUNCTIONS .

CLEAR LT_FCODES.
APPEND CL_GUI_ALV_GRID=>MC_FC_COL_OPTIMIZE TO LT_FCODES.
APPEND 'CREA' TO LT_FCODES.
CALL METHOD E_OBJECT->DISABLE_FUNCTIONS
 EXPORTING FCODES = LT_FCODES.

Code Part 32 – An example filling the table to be passed to above functions

D.8. About printing
 There are some events that you can utilize about printing. You simply write
what is to be output in methods handling these events. Here is the list of events in this
context.

print_end_of_list Define output text to be printed at the end of the entire

list

print_top_of_list Define output text to be printed at the beginning of the
entire list

print_end_of_page Define output text to be printed at the end of each page

print_top_of_page Define output text to be printed at the beginning of each
page

 To utilize one of the events above, let’s proceed with the standard procedure
since we did not add this event in our general scheme at section D.1.
 First add a handler method in your handler class definition as:
e.g. METHOD handle_print_top_of_list
 FOR EVENT print_top_of_list OF cl_gui_alv_grid .

 Then implement the method in the implementation part of your local class.
e.g. METHOD handle_print_top_of_list .
 WRITE:/ 'Flights Made on ', sy-datum .
 ENDMETHOD .

 And register this method as the handler.
e.g.
 SET HANDLER gr_event_handler->handle_print_top_of_list FOR gr_alvgrid .

 The output of these events can be examined at the print preview or in the
printing.

D.9. Making ALV Grid Editable
 This may be one of the mostly-used functionalities of the ALV Grid since as a
developer we prefer to use an ALV Grid instead of a table control for some reasons
that are known by all of you (at least for the sake of appearance). In fact, making the
ALV Grid editable has nothing to do with events. However, since controlling data
input which is explained in the next section is related, it is better that we deal with this
topic here.
 To make a column editable, it will be sufficient to set the field “EDIT” in the
field catalog. The ALV Grid perceives if there are some editable fields and adds
buttons for editing purposes. If you do not need these new buttons, you know how to
exclude them.
 To make individual cells editable, we will utilize the table we used for making
a cell a pushbutton. As you remember, it was of type “LVC_T_STYL”. If you have not
added this inner table, add it now. For this procedure; add the name of the field to the
field “FIELDNAME”, and pass “cl_gui_alv_grid=>mc_style_enabled” to make a
field editable and “cl_gui_alv_grid=>mc_style_disabled” to make a field non-
editable, to the field “STYLE”. You can use the one with “disable” when you make an
entire column editable and want just a few of cells along it non-editable. As you
remember from the pushbutton section we must tell the layout about this styling field.
 e.g. ps_layout-stylefname = ‘CELLSTYLES’ .

 Now, let’s solidify the procedure by code parts below. We want our column
“SEATSMAX” entirely editable except the case “CARRID” is ‘XY’ which is a rare case
and we want our cells along the column ‘PLANETYPE’ editable if their respective
‘CONNID’ fields contain the value ‘02’.
 Assume we have added our style table (“CELLSTYLES”) to our list data table
and tell the layout structure about it and we adjust the field catalog so that the column
“SEATSMAX” has the property “EDIT” set to ‘X’.

C

FORM adjust_editables USING pt_list LIKE gt_list[] .

 DATA ls_listrow LIKE LINE OF pt_list .
 DATA ls_stylerow TYPE lvc_s_styl .
 DATA lt_styletab TYPE lvc_t_styl .

 LOOP AT pt_list INTO ls_listrow .

 IF ls_listrow-carrid = 'XY' .
 ls_stylerow-fieldname = 'SEATSMAX' .
 ls_stylerow-style = cl_gui_alv_grid=>mc_style_disabled .
 APPEND ls_stylerow TO lt_styletab .
 ENDIF .
 IF ls_listrow-connid = '02' .
 ls_stylerow-fieldname = 'PLANETYPE' .
 ls_stylerow-style = cl_gui_alv_grid=>mc_style_enabled .
 APPEND ls_stylerow TO lt_styletab .
 ENDIF .

 INSERT LINES OF lt_styletab INTO ls_listrow-cellstyles .
 MODIFY pt_list FROM ls_listrow .
 ENDLOOP .
ENDFORM .
ode Part 33 – Conditionally setting fields to be editable or non-editable

 As usual, cell based settings override entire column settings. You can
dynamically switch between cases in any proper part of your execution. Just fill your
inner table as required and refresh table display; for entire column settings, set or
unset the property “EDIT” of the field catalog for the column and reset the field
catalog using “set_frontend_fieldcatalog”.
 As the last condition to be met for editability, you must call the method
“set_ready_for_input” passing ‘1’ to the parameter “i_ready_for_input”.
 Using this method you can switch between editable and non-editable mode. As
you guess, passing ‘0’ to the parameter while calling the method, switches to non-
editable mode.

D.10. Controlling Data Changes
 As we can now make our ALV Grid editable we may require controlling input
data. The ALV Grid has events “data_changed” and “data_changed_finished”.
The former method is triggered just after the change at an editable field is perceived.
Here you can make checks for the input. And the second event is triggered after the
change is committed.
 You can select the way how the control perceives data changes by using the
method “register_edit_event”. You have two choices:

i. After return key is pressed: To select this way, to the parameter
“i_event_id” pass “cl_gui_alv_grid=>mc_evt_enter”.

ii. After the field is modified and the cursor is moved to another field:
 For this, pass “cl_gui_alv_grid=>mc_evt_modifies” to the same
 parameter.

 To make events controlling data changes be triggered, you must select either
way by calling this method. Otherwise, these events will not be triggered.
 To control field data changes, ALV Grid uses an instance of the class
“CL_ALV_CHANGED_DATA_PROTOCOL” and passes this via the event “data_changed”.
Using methods of this class, you can get and modify cell values and produce error
messages. Here are some of those methods:

get_cell_value Gets the cell value. You pass the address of the cell to

the interface.
modify_cell Modifies the cell value addressed via parameters.
add_protocol_entry Add a log entry. You make use of standard message

interface with message type, message id, etc…
protocol_is_visible Make the error table visible or not.
refresh_protocol Refreshing log entries.

 With the reference of the instance, you can reach information about
modifications. These useful attribute tables are:

MT_MOD_CELLS Contains addresses of modified cells with “row_id”s
and “fieldname”s.

MP_MOD_ROWS Contains modified rows. Its type is generic.
MT_GOOD_CELLS Contains cells having proper values
MT_DELETED_ROWS Contains rows deleted from the list
MT_INSERTED_ROWS Contains rows inserted to the list

 Utilizing these methods and attributes you can check and give proper message
and also modify the cell content.

Code Part 34 – Checking the input together with anon-input value, adding a log and modifying the cell
content

FORM handle_data_changed USING ir_data_changed
 TYPE REF TO cl_alv_changed_data_protocol.

 DATA : ls_mod_cell TYPE lvc_s_modi ,
 lv_value TYPE lvc_value .

 SORT ir_data_changed->mt_mod_cells BY row_id .
 LOOP AT ir_data_changed->mt_mod_cells
 INTO ls_mod_cell
 WHERE fieldname = 'SEATSMAX' .

 CALL METHOD ir_data_changed->get_cell_value
 EXPORTING i_row_id = ls_mod_cell-row_id
 i_fieldname = 'CARRID'
 IMPORTING e_value = lv_value .

 IF lv_value = 'THY' AND ls_mod_cell-value > '500' .
 CALL METHOD ir_data_changed->add_protocol_entry
 EXPORTING
 i_msgid = 'SU'
 i_msgno = '000'
 i_msgty = 'E'
 i_msgv1 = 'This number can not exceed 500 for '
 i_msgv2 = lv_value
 i_msgv3 = 'The value is et to ''500'''
 i_fieldname = ls_mod_cell-fieldname
 i_row_id = ls_mod_cell-row_id .

 CALL METHOD ir_data_changed->modify_cell
 EXPORTING i_row_id = ls_mod_cell-row_id
 i_fieldname = ls_mod_cell-fieldname
 i_value = '500' .
 ENDIF .

 ENDLOOP .

ENDFORM. " handle_data_changed

 The event “data_changed” makes you aware about F4 functions. It sets the
appropriate parameter from the group with respect to where it was triggered. These
parameters are { E_ONF4, E_ONF4_BEFORE, E_ONF4_AFTER }.

D.11. Linking F1 Help to Fields
 To link your own F1 help to a field, you should simply utilize the event
“onf1”. At this point, it is assumed that you know how to define, implement and
register an event. The event has following parameters at its interface:

¾ E_FIELDNAME of type LVC_FNAME
¾ ES_ROW_NO of type LVC_S_ROID
¾ ER_EVENT_DATA reference to type CL_ALV_EVENT_DATA

 And, here is a simple sample code for the method.

 METHOD handle_on_f1 .

 PERFORM f1_help USING e_fieldname es_row_no .
 er_event_data->m_event_handled = 'X' .

 ENDMETHOD .

Code Part 35 – A sample code for the event”onf1”

 Here we set the attribute “er_event_data->m_event_handled” to prevent
further processing of standard F1 help.

D.12. Linking F4 Help to Fields
 For the last section, we will deal with linking F4 help to fields. It is easy. As
usual, define, implement and register the event “onf4” at proper places in your code.
For F4 help, you must register the fields whose F4 request will trigger the “onf4”
event. For this you must prepare a table of type “LVC_T_F4” and register this table
using the method “register_f4_for_fields”. While preparing table you must
include a line for each field which will trigger F4 event. For each field in the
structure;
¾ Pass the fieldname to ‘FIELDNAME’
¾ Set ‘REGISTER’ to make the field registered,
¾ Set ‘GETBEFORE’ to provide field content transport before F4 in editable mode
¾ Set ‘CHNGEAFTER’ to make the data changed after F4 in editable mode.

C

C

f

 DATA: lt_f4 TYPE lvc_t_f4 WITH HEADER LINE .
.. ..
 lt_f4-fieldname = 'PRICE'.
 lt_f4-register = 'X' .
 lt_f4-getbefore = 'X' .
 APPEND lt_f4 .

 CALL METHOD gr_alvgrid->register_f4_for_fields
 EXPORTING
 it_f4 = lt_f4[] .
ode Part 36 – Preparing table for the fields to be registered to trigger F4 event

ode Part 37 – A sample “onf4” method implementation

 METHOD handle_on_f1 .

 PERFORM f4_help USING e_fieldname es_row_no .
 er_event_data->m_event_handled = 'X' .

 ENDMETHOD .

Again, we set the attribute “er_event_data->m_event_handled” to prevent
urther processing of standard F4 help.

E. A Piece of Troubleshooting
No Question Answer

1

I register my local class as the
event handler for all ALV
instances. How can it be known
which instance evokes the
handler?

As a property of ABAP OOP, you can use
the predefined parameter “sender” in the
event interface. This parameter refers to
the caller instance.

2

When I wanted to filter with
respect to a field, it couldn’t
handle it. There were matching
records but it didn’t retrieve
them.

The most probable problem is that you
are trying to filter a text field and since
you didn’t set the “lowercase” property
at the field catalog, ALV just looks for
the upper case. Set this property for that
field while generating the field catalog.

3

I make some style settings to
individual rows or cells before I
call first display method.
However, I can’t get the result as
I want.

Follow all the steps described in related
sections.

1. You may have forgotten to call
“set_ready_for_input” if you are
talking about making cells editable.

2. There may be a filter which makes
the row of styled cell invisible or a
sorting may have changed the order
of the row making it somewhere
downwards so that you can’t
realize it.

4

The event “data_changed” is not
triggered

You should have not called the method
“register_edit_event” by which you
also select the way ALV Grid perceives
changes

5 My function buttons are not
visible on the toolbar

You should have forgotten to call the
method “set_toolbar_interactive”.

6 Can I modify the grid title during
execution?

Yes. Use the method “set_gridtitle”.

7

I want to add a pushbutton with
an icon for a column. Can I do
that?

Yes. Set the property ‘ICON” for the
column to ‘X’ at the field catalog. Then
do the style setting as to make it
pushbutton. Pass the icon name to the
field as its content.

8 Can I hide the header? Yes. Set the property “no_headers” of
the layout structure to ‘X’.

9 Can I hide the ALV toolbar? Yes. Set the property “no_toolbar” of
the layout structure to ‘X’.

10

It cannot find my local class on
the line where I declare my event
handler reference variable. When
I take my class definition above
data declarations, then variables
are not recognized.

Before your global data definitions, make
the interpreter be aware that your local
class is defined somewhere in your
program. For this, use
“CLASS <class> DEFINITION DEFERRED” or
simply make your definitions related to
this class after it is included.

11 Can I display hierarchical lists
using the ALV Grid Control?

No. ALV Grid Control does not support
hierarchical lists.

12

I made an editable ALV Grid
and I am utilizing
“data_changed” event to
control the data input. However,
I got log entries some of which
exist there although they are
corrected. Is there a refresh
problem? Where?

Exactly. Use the method
“REFRESH_PROTOCOL” of the instance
came via the parameter at appropriate
place to overcome.

13

I utilize “print_top_of_page”
event. However, at preview, it
sets the line size to the maximum
of 80 and the list size. How can I
overcome this?

Its line-size is restricted so. Try to change
your page header layout.

14

Does the ALV Grid Control
support Drag & Drop?

At other than SAPGUI for HTML
interfaces, the ALV Grid control supports
Drag & Drop. However, this topic was
not included in the context of this tutorial.

15
Displayed columns are not as I
programmed

Check whether a display variant is
activated. If this is not the reason, inspect
your field catalog again.

	Purpose
	Prerequisites
	Introduction
	Building Blocks
	B.1. General Scheme
	B.2. Building Field Catalog
	B.2.1. Structure of a Field Catalog
	B.2.2. Building Field Catalog Manually
	B.2.3. Building Field Catalog Semi-Automatically

	B.3. Layout Adjustments
	B.4. Printing Adjustments
	B.5. Excluding Unwanted Standard Function Buttons

	Non-Event Based Additional Functionalities
	C.1. Changing Field Catalog or Layout after First Display
	C.2. Setting Sort Conditions
	C.3. Filtering
	C.4. Making Selections
	C.5. Retrieving and Setting Scroll Status Info
	C.6. Coloring
	C.6.1. Coloring an Entire Column
	C.6.2. Coloring an Entire Row
	C.6.3. Coloring Individual Cells

	C.7. Inserting Hyperlinks
	C.8. Making Fields as Dropdown Menus
	C.9. Managing variants

	D. Event Based Additional Functionalities
	D.1. General Scheme for the Event Handler Class
	D.2. Hotspot Clicking
	D.3. Double Clicking
	D.4. Pushbuttons on the List
	D.5. Adding Your Own Functions
	D.6. Overriding Standard Functions
	D.7. Context Menus
	D.8. About printing
	D.9. Making ALV Grid Editable
	D.10. Controlling Data Changes
	D.11. Linking F1 Help to Fields
	D.12. Linking F4 Help to Fields

	E. A Piece of Troubleshooting

